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Abstract 

The Lax formulation of the hyper-Hermiticity condition in four dimensions is used to derive a pair 
of potentials that generalises Plebanski's second heavenly equation for hyper-K~ihler four-manifolds. 
A class of examples of hyper-Hermitian metrics which depend on two arbitrary functions of two 
complex variables is given. The twistor theory of four-dimensional hyper-Hermitian manifolds is 
formulated as a combination of the Nonlinear Graviton Construction with the Ward transform for 
anti-self-dual Maxwell fields. © 1999 Elsevier Science B.V. All rights reserved. 
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1. Complexified hyper-Hermitian manifolds 

A smooth manifold .A4 equipped with three almost complex structures (I ,  J ,  K)  satisfy- 

ing the algebra of  quaternions is called hyper-complex iff the almost complex structure 

ffx = a l  + b J  + c K  

is integrable for any (a, b, c) ~ S a. We shall use a stereographic coordinate ~. = (a + ib )  / (c - 

1) on S e which we will  view as a complex projective line C P  1. Let g be a Riemannian metric 

on .A4. If  (.A4, ,Tz) is hyper-complex and g ( f f z X ,  J x Y )  = g (X ,  Y) for all vectors X, Y on 

.A4 then the triple (.A/l, fix, g) is called a hyper-Hermitian structure. From now on we shall 

restrict ourselves to oriented four-manifolds. In four dimensions a hyper-complex structure 
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defines a conformal structure, which in explicit terms is represented by a conformal flame 

of  vector fields (X, I X ,  J X, K X),  for any X E T M .  

It is well known that this conformal structure is anti-self-dual (ASD) with the orientation 

determined by the complex structures. Let g be a representative of  the conformal structure 
defined by ffz, and let Z A'B' = ( Z  °°', Z m', Z iv) be a basis of  the space of  SD two-forms 

A2+(.A/I) (see Appendix A for notation and conventions). The following holds: 

Proposition 1 [1]. The Riemannian four-manifold ( M ,  g) is hyper-Hermitian if  there ex- 

ists a one-form A (called a Lee form) depending only on g such that 

d •  A'B' = - A  A r A'B'. (I) 

Moreover if A is exact, then g is conformally hyper-Kiihler. 

In Section 2 we shall express the hyper-Hermiticity condition on the metric in four 

dimensions in terms of  Lax pairs of  vector fields on A4. The Lax formulation will be used 

to encode the hyper-Hermitian geometry in a generalisation of  Plebafiski's formalisms [ 14]. 

Some examples of  hyper-Hermitian metrics are given in Section 3. In Section 4 we establish 

the twistor correspondence for the hyper-Hermitian four-manifolds. If  A4 is real then the 

associated twistor space is identified with a sphere bundle of  almost-complex structures 

and the resulting twistor theory is well-known [1,13]. We will work with the complexified 

correspondence and assume that A//is a complex four-manifold. The integrability conditions 

under which (1) can hold are d A 6 A 2_ (A/l) so d A can formally be identified with an AS D 

Maxwell field on an ASD background. This will enable us to formulate the twistor theory 

of  hyper-Hermitian manifolds as a nonlinear graviton construction 'coupled'  to a Twisted 

Photon Construction [ 18]. 
In Section 5 we make further remarks about the hyper-Hermitian equation, and list some 

open problems. The spinor notation which is used in the paper is summarised in Appendix A. 

2. Hyper-Hermiticity condition as an integrable system 

The hyper-Hermiticity condition on a metric g can be reduced to a system of second 

order PDEs for a pair of  functions. I The Lax representation for such an equation will be 

a consequence of  the integrability of  the twistor distribution. We shall need the following 

lemma: 

Lemma 2. Let 7 AA, be four  independent holomorphic vector fields on a four-dimensional 

complex manifold All, and let 

L0 : V00, - ;~Vm', Lj = Vio, - )~V11', where )~ ~ CP I. 

I K.E Tod has given a generalisation of the first heavenly equation to the case of real hyper-Hermitian 
four-manifolds. 



268 M. Dunajski /Journal of Geometry and Physics 30 (1999) 266-281 

if  

[L0, Ll ]  = 0 (2) 

for  every )~, then V AA, is a null tetrad for  a hyper-Hermitian metric on A/I. Every hyper- 

Hermitian metric arises in this way. 

Proof.  We use the spinor notation of Penrose and Rindler [12]. Let VAA,  be a tetrad of 
holomorphic vector fields on A,4. A central result of  twistor theory [9,11 ] (see also Section 

4 of this paper) is that V A A '  determines an anti-self-dual conformal structure if and only if 
the distribution on the primed-spin bundle S A' spanned by the vectors 

LA = 7rA'~aa ' -']- FAA'B'c '~A'~ B' 0 
07r C, 

is integrable. This then implies that the spin bundle is foliated by the horizontal lifts of  or- 
surfaces. Here Jr a '  = rr°'o a' + Jr l'ta' is the spinor determining an a-surface and is related 
to )~ = ( - J r  t ' / r r° ' ) .  From the general formula 

d E  A'B' + 2FC ~A' A Z e ' )c '  = 0, 

we conclude that I"AA,•, c, = --AA(c,6B,)A, for some AAA, and 

L A = 1TA'V AA , -q- (1/2 )rrA'A AA, Y, 

where 7" = ~A'/oYl'A' is the Euler vector field. We have 

[LA, LB] = 775A'yFB'([VAA ,, VBB, ]  q'- 1/2([VBB', AAA'T] --  [VAA,  , ABB,"I'])) 

= yrA'7~B'([VAA , ' VBB, ] -+- (1/2)eABVC(A,AB,)C T )  

= 7~A'yrB'[VAA ,, VBB, ] since dA is ASD. (3) 

We shall introduce the rotation coefficient C~b defined by 

[ v . ,  Vb] = C~bV,~, 

They satisfy Cabc = l~ach - 1-'bca. From the last formula we can find a spinor decomposition 

of Cabc, 

Cabc "~- CABCC'EA'B' "~- CA'B'CC'EAB, 

where 

CA'B'CC' = FC(A'B')C' q- EC'(B'I-'A')AC A. (4) 

Collecting (3), and (4) we obtain 

[LA, LB] = ~ABTrA'TrB'((1/2)AC, eA ,C' + eA,C'FB,DCD)VcC ,. 

We choose a spin frame (o a , t A) constructed from two independent solutions to the charged 
neutrino equation 

(V AA' + (1/2 ) A AA' ) oa = (V AA' -~ (1/2 ) A AA' ) tz = O. 



M. Dunajski/Journal of Geometry and Physics 30 (1999) 266-281 269 

In this frame I-'AA ,BA = --(1/2)AAB,. To obtain Eq. (2) we project LA to the projective 

prime-spin bundle .T = P S A , .  In terms of the tetrad 

[VA0,, VB0, ] = 0, 

[VA0', VBI' ] -q'- [VAI', VB0, ] = 0, 

[VAl,, VBI, ] = 0. 

(5) 

(6) 

(7) 

The formulation of the hyper-complex condition in formulae (5)-(7) was in the Riemannian 
case given in [8] and used in [7]. The Lax equation (2) can be interpreted as the anti-self- 
dual Yang-Mills equations on C 4 with the gauge group G = D i f f ( M ) ,  reduced by four 

translations in C 4. [] 

Define (1, 1) tensors ,.7~' := e AA' ~ V A B ' .  As a consequence of (5)-(7) the Nijenhuis 

tensors 

A' A ~ A t N B, (X, Y) := ( j-A, ' )2[/ ,  y]  _ j-/~, [j-/~, X, Y] 

Jz,'rJ + EJ 'X, Ja,' rJ 

vanish for arbitrary vectors X and Y. Tensors JAB,' can be treated as 'complexified complex 

structures' on Ad. The complex structure ,~. on S A' can be conveniently expressed as 

,J~. : 7rm,~B'ff~ ', where 7rA,~ a' : 1. 

Now we shall fix some remaining gauge and coordinate freedom. Eqs. (5)-(7) will be 

reduced to a coupled system of nonlinear differential equations for a pair of  functions. 

P r o p o s i t i o n  3 .  Let X AA' -~- (X A , W A) be local null coordinates on .M and let 0~) A be a 

pair of  complex valued functions on .M which satisfy 

Then 

O20C 8O)B 020C 
- -  + - -  - -  O. ( 9 )  
OXAOtO a OX A 8XAOX B 

OOAdwB ds 2 = dxA ® dw A + ~x  B ® dw A (10) 

is a hyper-Hermitian metric on A4. Conversely every, hyper-Hermitian metric locally arises 

by this construction. 

Eq. (1) and its connection with a scalar form of (9) was investigated by different methods 
in [6] in the context of  weak heavenly spaces. Other integrable equations associated to 

hyper-Hermitian manifolds have been studied in [4]. 

Proof.  Choose a conformal factor such that AAA' = OA'AA for some OA, and AA. This can 
be done since the two-form ,U 1'1' is simple and therefore Eq. (1) together with the Frobenius 
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theorem imply the existence of the conformal factor such that d Z  1' v = 0. Hence, using 

Darboux's  theorem, one can introduce canonical coordinates w A such that 

~,1'1' = (1 /2 )SABdW a A d w  B, 

and choose an unprimed-spin frame so that oA,e AA' = d w  A . Coordinates w A parametrise 

the space of  null surfaces tangent to o A', i.e. o A' VAA, W B = 0. Consider 

j l '  = o B ' d w  A ~ VAB," 

The tensor ,.701, ' is a degenerate complex structure. Therefore (,.701,') 2 = 0 where J01, ' is now 
thought of  as a differential operator acting on forms. Let h be a function on .hA. Then 

ffol,'-J d(flol, '(dh)) = 0 implies that [VA0', VB0,] = 0, 

and our choice of  the spin frame is consistent with (5)-(7). By applying the Frobenius 

theorem we can find coordinates x A such that 

0 8 8 
V A 0 , -  8X a , VAI'---- ~W A - - O A  B 8X-------- ff . 

Using Eq. (6), we deduce the existence of a potential O m such that 69A B • VAO,69 B. NOW 

(7) gives the field equations (9) 

0269C 069B 0269C 
- - +  - -  = 0 .  
OXAOW A OX j OXAOX B 

The dual frame is 

69AdwB cA1 ' =_ d w  A, e AO' = d x  A + 8x  B 

which justifies formula (10). [] 

In the adopted gauge, the Maxwell  potential is 

0269 B 

A -  8 x A S x B d Y g  A 

and VaAa  = 0, i.e. this is a 'Gauduchon gauge' .  Electromagnetic gauge transformations 
on A correspond to conformal rescalings of  the tetrad (which preserve the hypercomplex 
structure). The second heavenly equation (and therefore the hyper-K~hler condition) follows 
from (9) if in addition VAO,69 A = 0. This condition guarantees the existence of a scalar 
function 69 which satisfies the second Plebafiski equation 

0269 1 020 0269 
- - +  - -  - - 0  
8wASxA 2 8xBSx a 8XBOX a 

such that 0 A = VAo, O .  In this case A is exact so can be gauged away by a conformal 
rescaling. 
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3.  E x a m p l e s  

We look for solutions to (9) for which the linear and nonlinear terms vanish separately, 
i.e. 

O2(~)C 009 B O2(~C 
- -  - -  - 0 .  ( 1 1 )  
OXaOll) a OX a OXAOX B 

Put w a = (w, z), x a = (y, - x ) .  A simple class of solutions to (1 1) is provided by 

Oo = ax I, O)l = by k, k, l E 77, a, b E C. 

The corresponding metric and the Lee form are 

ds 2 = dw ® d x  + dz ® dy + (alx I-I + bky k - I )dw ® dz, 
A = b ( k -  1)kyk-Zdw - a ( l  - 1)lxl-ldz.  (12) 

From calculating the invariant 

CABcDC ABcD= (3/2)abk(k - 1)(k - 2 ) I ( / -  1 ) ( / -  2)xl-3y k-3, 

we conclude that the metric (12) is in general of type I or D (or type I I I  or N if a or b 
vanish, or k < 3 or l < 3). 

3.1. Hyper-Hermitian elementary states 

A more interesting class of solutions (which generalise the metric of Sparling and Tod 

[17] to the hyper-Hermitian case) is given by 

1 F c ( W A )  ' ( 1 3 )  
~) C -- X A ll) A 

where W a = wA /(xBw B) and Fc are two arbitrary complex functions of two complex 

variables. The corresponding metric is 

1 ( w 8 OFc 
ds 2 = dXA ® d w  A q- (XAWA) 2 - F c  + (XAtOA~) OW B ~ 6117 C ~ (WAdwA).  

This metric is singular at the light-cone of the origin. The singularity may be moved to 
infinity if we introduce new coordinates X A = xA/(xBwB),  W A = wA /(xBU, B) and 

rescale the metric by (X3 wA)  2. This yields 

^ ( C OFB "~ 
ds 2 = d X A  ® d w  A +  \FB + W -~--(  ] 

x ( ( X A W A ) d W  B - W B d ( X A W A ) )  ~ ( W A d W  A) (14) 

and 

OF A w A w B w  C 02FA ) WDdWD" A = - 3WAFA + 5wAwB-ff-~--ff q- OWBOWC 

The metric of Sparling and Tod corresponds to setting FA = WA. 
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Let us consider the particular case FA = ( a W k Z  t, b w m z n ) .  The metric is 

(a(k_+. l  + 1)wkz I , b(m + n  + 1)wmz n ) 
ds 2 = dw ® dx  + dz ® dy + \ (wx + "~y)T'~%~ aw + (wx + zy) re+n+2 dz 

/ 

®(wdz  - zdw) .  (15) 

Ifa  = - b ,  1 = n + 1, k = m -  1 then (~)A : VA0' O where O = --awkz l -  1 (wx +zy)  -(k+t). 

For these values of parameters the metric is hyper-KLhler and of type N. 

Some solutions to (11) have real Euclidean slices. For example 

y (2wx + zy) y2 
Oo = 01 -- 

w 2 (wx + zy) 2' w (wx + zy) 2 

with w = Y, z = ~ yield a solution of type D, which is conformal to the Eguchi-Hanson 

metric. 

4. The twistor construction 

In this section we shall establish the correspondence between complexified hyper- 

Hermitian four-manifolds and three-dimensional twistor spaces with additional structures. 

We shall also look at examples given in Section 3 from the twistor point of view. We begin 

with recalling basic facts about the twistor correspondences for ASD spaces [9,11 ]. 

Define u-surfaces as null self-dual two-dimensional surfaces in .M. The correspondence 

space 5 t- is a set of pairs (x,)~) where x ~ .M and 3. ~ C• 1 parametrises or-surfaces 

through x in A4. We represent 5 t" as the quotient of the primed-spin bundle S A' with fibre 

coordinates ZrA, by the Euler vector f ie ld  7"(A'/oYg A' SO that the fibre coordinates are related 

by ~. = :r0,/zq,. The space U possesses a natural two-dimensional distribution (called the 

twistor distribution, or the Lax pair, to emphasise the analogy with integrable systems). The 

Lax pair on b t" arises as the image under the projection T S  A' > T f "  of the distribution 

spanned by 

7~A,VAA, -[- FAA,B,C,ygA,y~B, 0 
OYr C, 

and is given by 

LA = ( ~ I ) ( ~ A ' V A A '  + fAOZ), where fA = (7rV2)I"AA'B'C 'TCA'7~B'ygC'. (16) 

The integrability of the twistor distribution is equivalent to CA'B'C'D' = 0, the vanishing 

of the self-dual Weyl spinor. The twistor space arises as a factor space of ~" by the twistor 
distribution. This leads to a double fibration 

./~ ~, P .~ q > 797 -. (17) 

The existence of LA can  also be deduced directly from the correspondence with 797-. 
The basic twistor correspondence [ 11 ] states that points in .M correspond in 797- to rational 
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curves with normal bundle 0 a (1) = O (1) ~ O (1). Let lx be the line in 797- that corresponds 

to x 6 A4. The normal bundle to lx consists of  vectors tangent to x (horizontally lifted to 

Tc~.z).T') modulo the twistor distribution. Therefore we have a sequence of  sheaves over 

C p  ~ 

0 ~ D ) C 4 ~ (QA(1) ) 0. 

The map C 4 ~ (QA(1) is given by V AA' ~ vAA'7~A ,. Its kernel consists of  vectors of 

the form zrA')~ A with )~A varying. The twistor distribution is therefore D = O ( - 1 ) ®  S A 

and so LA, the global section o f / ' ( D  ® O(1) ® SA), has the form (16). 

We have 

Propos i t ion  4. Let 797" be a three-dimensional complex manifold with the following struc- 
tures: 

(A) a projection Iz : 797- ~ CP l, 

(B) a four-complex dimensional family o f  sections with a normal bundle O(1) ~ O(1). 

Then the moduli space ./V[ of  sections of  tz is equipped with hyper-Hermitian structure. 

Conversely, given a hyper-Hermitian four-manifold there will always exist a corresponding 

twistor space satisfying conditions ( A ) and ( B ). 

Remarks 1. 

(i) The integrability conditions under which ( 1 ) can hold a re d A ~ A 2 _ ( M )  so d A can be 

identified with an ASD Maxwell  f ield on an ASD background. This suggests that hyper- 

Hermitian manifolds can be studied with respect to the Twisted Photon Construction 

[18], associated with d A. Let K = A3(797 ") be the canonical line bundle. Proposition 

4 is different from the original Nonlinear Graviton construction because the line bundle 
L :=  K* ® O ( - 4 ) ,  where 0 ( - 4 )  = # * ( T * C P I )  2, is in general nontrivial over 797-. 

It is the twisted photon line bundle associated with d A. 

(ii) I f  A/[ is compact then it fol lows from Hodge theory that dA  = 0 and the hyper- 

Hermitian structure is locally conformally hyper-Kdhler. We focus on the noncompact 

case. 

(iii) I f  M is real then 797- is equipped with an anti-holomorphic involution preserving 

(A) and we recover a result closely related to one o f  Pedersen and Swann [13] who 

constructed a twistor space corresponding to a real four-dimensional ASD Einstein- 

Weyl metric with vanishing scalar curvature. 

(iv) The correspondence is preserved under holomorphic deformations o f  797- which pre- 

serve ( A ). 

Proof. Let )~ = zr0,/rrl, be an affine coordinate on C P  I . 7:'T can be covered by two sets, U 

and U with I~-I < 1 -4- E on U and I~-I > 1 - E o n / ]  with (~o z , ~.) being the coordinates on 

U and (d~ A , ~.- 1 ) on U. The twistor space 797- is then determined by the transition function 

~o B = ~oB(~o A, 7rA,) on U A/_). Let lx be the line in 797- that corresponds to x ~ M and let 

Z ~ 79T lie on Ix. We denote by 5 r the correspondence space 79T x MIz~/~ = M × C P  I 

and use the double fibration picture (17). 
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Consider the line bundle 

L = K* ® 0 ( - 4 )  

over 79T given by the transition function f ----- det(Off2a/Ocoe). When pulled back to 5 r it 

satisfies 

L a f  = 0 .  

Since H 1 (9 v, O) = 0, we can perform the splitting f = h o h ~  l . By the standard Liouville 

arguments (see [18]) we deduce that 

hol  L a (ho) = h ~  I L A (hoo) ~-- - - (1 /2 )aa ,  (18) 

where AA = AAB,rr B' is global on Or. The integrability conditions imply that FAn = 
A' VA,(AAB) is an ASD Maxwell field on the ASD background. The one-form A = .,aaaa ,e-AA' 

is a Maxwell potential. The canonical line bundle of P T  is K = 0 ( - 4 )  ® L*. To obtain 

a global, line bundle valued three-form on 79T one must tensor the last equation with 
0 (4)  ® L. We pick a global section ~ 6 F ( K  ® 0(4)  ® L) and restrict ~ to l 

~11 • 27)~ A yr A,dTr a', (19) 

where ygA,dT~ A' e ~ l  ® 0(2) .  A two-form 

27x E F(A2(/ t-I(~.))  ® 0(2)  ® L) (20) 

is defined on vectors vertical with respect to/~ by rx (U ,  V)IrA,dTr A' = ~(U, V .... ). Let 
p'27~ be the pullback of 27~ to 5 r .  Note that if 

A ~ A - dip (gauge transformation on L) then p*27z ~ e~p*~,x. 

Let p*Z~ be defined over U and p * ~  over U. We have f (p*27~) = p*~x .  By definition, 
P*~?x descends to the twistor space, i.e., 

£LA (P*Zx) = 0. (21) 

We make use of the splitting formula, and define (on 5 r )  27o = ho(p*Zx) .  The line bun- 

dle valued two-form 27o is a globally defined object on .T', and therefore it is equal to 
Zra,JrB, zA'B'.  Note that 27o does not descend to 797 ". Fix A ~ CP l (which gives a copy .A4x 
of .A4 in U) and apply (21). This yields 

ff-'L A 270 = ho1L a (ho) 270. 

After some work we obtain formula (1): 

d27 A'B' = - A  A 27A'B'. (22) 

The integrability conditions for the last equation are guaranteed by the existence of solutions 
to (18). Eq. (22) and the forward part of Proposition 1 imply that .A4 is equipped with 



M. Dunajski/Journal of  Geometry and Physics 30 (1999) 266-281 275 

hyper-Hermitian structure. If  the line bundle L over T 'T  is trivial, then A4 is conformally 

hyper-K~ihler. 

Now we discuss the converse problem of recovering various structures on 79T from the 

geometry of .M.  Let .hal be a hyper-Hermitian four-manifold. Therefore CA'8'C'O' = 0 and 

there exists a twistor space satisfying condition (A). Eq. (22) implies that F = dA is an 

ASD Maxwell field, and we can solve 

~ A ' ( V A A '  q- ( 1 / 2 ) A A A ' ) p  ~- 0 

on each a-surface (self-dual, two-dimensional null surface in A/l). We define fibres of  L 

as one-dimensional spaces of  solutions to the last equation. The solutions on a-surfaces 

intersecting at p 6 .A// can be compared at one point, so L restricted to a line Ix in P T  

is trivial. In order to prove that 79T is fibred o v e r  C ~  1 notice that equation 7r A' (VAA, -q- 
(1/2)Aaa,)zrs,  = 0 implies gA'VAA,~, = 0, SO ~. and 1/X descend to give meromorphic 
functions on twistor space and defines the map 79T ~ CP  l . [] 

4.1. Examples 

In this section we shall give the twistor correspondence for the family of  hyper-Hermitian 

metrics (15) found in Section 3. First we shall look at the passive twistor constructions of 

O c  by the contour integral formulae. It will turn out that Oc are examples of  Penrose's 

elementary states. Then we explain how the cohomology classes corresponding to Oc can 

be used to deform a patching description of  7~T. The deformed twistor space will, by 

Proposition 4, give rise to the metric (15). Both passive and active constructions in this 

section use methods developed by Sparling in his twistorial treatment of the Sparling-Tod 

metric. 

Parametrise a section of  tt : 7~T 

xAA' := 07r A,O('OA rrA,=OA, = ( f l Y  

SO that 

CP  l by the coordinates 

X AI' = 113 A = (tO, Z), X AO' = X A = ( y , - x ) .  

Let us consider the particular case FA = (a W k Z t , b W m Z") discussed in Section 3.1. We 

work on the nondeformed twistor space 7~T with homogeneous coordinates (o9 A , zra,). 

On the primed-spin bundle 090 = zrr(w + )~y), oJ 1 = zU,(z - Xx). Consider two twistor 
functions (sections of  H 1 (CP 1 , 0 ( - 2 ) )  

k (zr0') k+l (zr0') m+n 
h0 = ( - 1 )  a ( w o ~ ) k + l ,  hi = (-1)mb(wo)n+l(wl)m+l, 

where a, b ~ C and k, l, m, n ~ 77 are constant parameters. Then 

if O A ( W , Z , X ,  y )  = ~ i  hA(wB'zrB'):rrA'dTrA" 

F 
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Here/-" is a contour in Ix, the CP 1 that corresponds to (w, z, x, y) e .hi. It separates the 
two poles of the integrand. To find 69A we compute the residue at one of these poles, which 

gives 

wk z l tom z n 

690 = a (wx + zy) k+l+l ' 691 = b (wx + zy)  m+n+l ' (23) 

and hence the metric (15). 

Now we shall use hA to deform the complex structure of 7~T. We change the standard 

patching relations by setting 

~,)a .~- f A ( w A  ' t), 

where t is a deformation parameter and f a  is determined by the deformation equations 

d f  0 bzr~, +n+3 d /1  aJr(~ +1+3 (_ l )k+l .  
dt = (~O)n+l(~l)m+! ( -1 )m '  dt - (~o)t+l(~l)k+l (24) 

This equation has a first integral. If  a = - b ,  l = n + 1, k = m - 1 then (24) implies that 
wowl = ~o~l  is a global twistor function. When pulled back to the spin bundle this can be 

expressed as PA'B' Jr a'~r S', and the corresponding metric admits a null Killing vector KA a' 
given by 

VAC'PA'B' = KA(A'~,B')C'. 

Assume that n + 1 # l, and k + 1 # m. Then the first integral of (24) 

b(TtO')m+n+3(-1) m+l (col)k+l-  m a(zrO')k+l+3(--1) k+l (o)0)n+l_ l + Q= 
n + l - I  k + l - m  

is given by a function homogeneous of degree k + n + 4. Its pullbacks to .7" (which we also 
denote Q) satisfies LA ( a )  = 0. This implies the existence of a Killing spinor of valence 
(O ,k+n  + 4 )  on .A4. 

5. Further remarks 

5.1. Symmetries 

Eq. (9) has the obvious first integral given by functions Ac  which satisfy 

OOc OOB OOC OAf 
- -  . J r -  - -  _ _  _ _  

0113 A OX A OX B OX A" 

It is implicit from the twistor construction that Eq. (9) has infinitely many first integrals given 
by hidden symmetries. These will be studied (and the associated hierarchy of equations [5]) 
in a subsequent paper. Here we give a description of those symmetries that correspond to 
the pure gauge transformations. 
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Let M be a vector field on .A4. Define t~OVAA , := [M, VAA, ]. This is a pure gauge 
transformation corresponding to the addition of ~.Mg tO the space-time metric. 

Once a coordinate system leading to Eq. (9) has been selected, the field equations will not 
be invariant under all the diff(.A4) transformations. We restrict ourselves to transformations 
that preserve the canonical structures on M ,  namely 

a 
S I'l' = ( 1 / 2 ) d w a A d w  A, and ffl,' = d w A ®  Ox ~ "  

The condition £M Z°'°'  = £Mifd/  = 0 implies that M is given by 

0tOa 0h 00to ~ ( O2h "~ 0 M -- + gA __xBotoAOwBJ Ox A ' 

where h = h(w A) and gA = ga(toB). Space-time is now viewed as a tangent bundle 

A/[ -- TA/"2 with w A being coordinates on the two-dimensional complex manifold A/~. The 
full diff(A4) symmetry breaks down to sdiff(A/"2) which acts on .A4 by Lie lift. Let 8o69 
corresponds to 8 ° V AA' by 

8 8 ° 0  8 8 
60VA1 , -- 

OX A OX B 

The 'pure gauge' elements are 

8 o 0  B = £ M ( 6 )  e) + F B x a Og B 02h 
-- ~ -~ xAXCou~AOtoCow B'  

where F 8, ga and h are functions of w 8 only. 

5.2. gl(2, C) connection 

A natural connection which arises in hyper-Hermitian geometry is the Obata connection 
[ 10]. In this section we discuss other possible choices of connections associated with hyper- 
Hermitian geometry. We shall motivate our choices by considering the conformal rescalings 
of the null tetrad. The first Cartan structure equations are 

de aa' = e BA' A F A B  + e AB' A FA 'B  ,. 

Rescaling e AA' > ~AA' = eOeAA ' yields 

d~AA' = ~SA' A FAB + ~AB' A FA'B, + d e  A ~AA'. 

The last equation can be interpreted in (at least) three different ways; 
(a)  Introduce the torsion three-form by T = * ( d O )  = T.bc~ ~ A ~b /X U .  Then 

d~a + Fab A ~b ~- T a, 

where T a = (1/2)Tffc ~b A U. 
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(b) Use the torsion-free sl(2, C) ~ ~(2, C) spin connection 

FAB ?' FAB "]- 1/4 * (d~b A "-~AB), FA'B' ~' FA, B, "]- 1/4 * (d~b A ZA,B, ). 

(c) Work with the torsion-free g/(2, C) ~ g/(2, C) connection 

GAB = FAB + aeABd(p, GA'B' = FA'B' q- (1 -- a)ea,B,d(9 

with FAB = F(AB) E sl(2, C) ® A I ( T * A 4 ) ,  FA'B' = F(A'B') E ~(2, C) ® AI(T*J~4) 
and a 6 C. This leads to 

d~ a + Gab A ~b = O, 

where Gab = Fab + ea'B'eaBd(b. The structure group reduces to 

sl(2, C) @ ~(2,  C) ~ u(1) C gl(2, C) ~ ~(2 ,  C). 

For (complexified) hyper-Hermitian four-manifolds d~b is replaced by the Lee form - A  in 
the above formulae. The possibility (a) would then correspond to the heterotic geometries 
studied by physicists in connection with (4, 0) supersymmetric a-models (see [2] and 
references therein). Choice (b) is what we have used in this paper. Let us make a few 
remarks about the possibility (c). 

Eq. (1) implies that a = 1/2 and 

GAB = FAB -- 1/2eABA, GA'B' = --1/2eA'B'A 

with l A B  = F(AB) E sl(2, C). In the adopted coordinate system 

( 1 sod 
FAA'BC =--Oa,  V(AO"FBO'OC) + ~8BC OxAOxD } , 

1 O0 D 
HAA'B'C' ---- --~OA'eB'C' OxAOxD . 

The curvatures of GAB and GA'B' are 

RAB = dGAB q- GAc  /x GCB = RAB -- 1/2eAB F, RA'B , = --1/2eA'B, F, 

where F = d A  is an ASD two-form. It would be interesting to investigate this possibil- 
ity with connection to gl(2, C) formulation of Einstein-Maxwell equations [15], and its 
Lagrangian description [16]. 

5.3. Reductions 

Hyper-Hermitian four-manifolds which admit a tri-holomorphic vector field were re- 
cently studied in [2,3]. It would be interesting to look at the case of a general Killing vector 
taking Eq. (9) as a starting point. One might also consider reduction of real slices with 
(+ + - - )  signature to obtain an 'evolution' form of Einstein-Weyl equations for metrics 
of signature (+ - - ) .  
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Appendix A 

We shall use the conventions of Penrose and Rindler [ 12]: a, b . . . .  are four-dimensional 

space-time indices and A, B . . . . .  A ~, B ~ . . . .  are two-dimensional spinor indices. The tan- 

gent space at each point of A4 is isomorphic to a tensor product of  two spin spaces 

T " A 4  = S A ~ S A'. 

Spin dyads (o A, t A) and (o A', t A') span S a and S A', respectively. The spin spaces S A and 

S A' are equipped with symplectic forms eAB and eA'B' such that e01 = e0'r = l. These 

anti-symmetric objects are used to raise and lower the spinor indices. We shall use the 

normalised spin frames, which implies that 

t t 

oBt C __ tBo C = E BC, oB'tC ' __t B 0 C = E B'C'. 

Let e AA' be the null tetrad of  one-forms on .M and let VAA' be the frame of dual vector 

fields. The orientation is fixed by setting v = e °V/x e l°' A e 11' A e °°'. The local basis Z 'AS 

and Z A'B' of spaces of  ASD and SD two-forms are defined by 

e AA' A e BB' : ~ABzAtBI  + 6 A ' B ' z  AB. 

The Weyl tensor decomposes into ASD and SD part 

Cabcd = 6A'B'EC'D'CABCD -'[- 6ABECDCA'B'C'D '. 

The first Cartan structure equations are 

de AA' : e BA' A F A B  + e AB' A FA 'B  ,, 

where FAB and FA'B' are the SL(2, C) and SL(2, C) spin connection one-forms symmetric 
in their indices, and 

FAB = FCC'AB eCC', FA'B' = F'CC'A'B'e CC', 

FCC,XB, = OA,VCC, t B, -- tX~cC,OB, .  

The curvature of  the spin connection 

RAB -~- d F A B  + F A c  A F CB 



280 M. Dunajski /Journal of Geometry and Physics 30 (1999) 266-281 

decomposes as 

RAB = CABcD ZCD + ( 1 / 1 2 ) R Z A B  4- cljABc,D,,~ C'D' 

and similarly for R A' B'. Here R is the Ricci scalar and t~ABA, B, is the trace-free part of the 

Ricci tensor. 
For convenience we express various spinor objects on .A4 in terms of OA. 

o~)A B eAl I 
e aO' = dx a Jr- ~ x B d W  , = dw A, tetrad 

dual tetrad 

metric determinant 

Weyl spinors 

spin connections 

Lee form 

wave operator 

Ricci scalar 

8 
V A O , -  OX A , 

det(g)  = 1 

CA,B,DrE , --~ 0, 

1 

8 O 0  B 8 

VAI,  = Ow A Ox A 8x  B '  

C ABC D .~- V( Ao, V Bo, Vco,(~ D) , 

I"AA'BC = -- ~ OA' (V(BO' VCO' OA) "at- V BO' VCO' ~)A), 

020  B 
I-'AA,B, C, -- OxBOxA O(B'SC') A'' 

020  B 

A -  O x B O x A d W  A, 

O 2 

[S]g = AaOa + VAVAo , - -  OXAOwA 

(} 2 {~) B 8 8 {~ A 8 O 
-F - -  - -  + - -  

OXAOXB 8X A 8XB 8X A t~X B' 

R = 1/12(VaAa + AaA a) = O. 

The last formula follows because A is null and satisfies the Gauduchon gauge. 
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